Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.

Identifieur interne : 000567 ( Main/Exploration ); précédent : 000566; suivant : 000568

An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.

Auteurs : Haoyang Xin [République populaire de Chine, États-Unis] ; Tao Zhang [République populaire de Chine] ; Yufeng Wu [République populaire de Chine] ; Wenli Zhang [République populaire de Chine] ; Pingdong Zhang [République populaire de Chine] ; Mengli Xi [République populaire de Chine] ; Jiming Jiang [États-Unis]

Source :

RBID : pubmed:31529535

Abstract

The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.

DOI: 10.1111/tpj.14536
PubMed: 31529535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.</title>
<author>
<name sortKey="Xin, Haoyang" sort="Xin, Haoyang" uniqKey="Xin H" first="Haoyang" last="Xin">Haoyang Xin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tao" sort="Zhang, Tao" uniqKey="Zhang T" first="Tao" last="Zhang">Tao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009</wicri:regionArea>
<wicri:noRegion>225009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yufeng" sort="Wu, Yufeng" uniqKey="Wu Y" first="Yufeng" last="Wu">Yufeng Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wenli" sort="Zhang, Wenli" uniqKey="Zhang W" first="Wenli" last="Zhang">Wenli Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Pingdong" sort="Zhang, Pingdong" uniqKey="Zhang P" first="Pingdong" last="Zhang">Pingdong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xi, Mengli" sort="Xi, Mengli" uniqKey="Xi M" first="Mengli" last="Xi">Mengli Xi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Michigan State University, East Lansing, MI, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Michigan State University AgBioResearch, East Lansing, MI, 48824</wicri:regionArea>
<wicri:noRegion>48824</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31529535</idno>
<idno type="pmid">31529535</idno>
<idno type="doi">10.1111/tpj.14536</idno>
<idno type="wicri:Area/Main/Corpus">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000707</idno>
<idno type="wicri:Area/Main/Curation">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000707</idno>
<idno type="wicri:Area/Main/Exploration">000707</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.</title>
<author>
<name sortKey="Xin, Haoyang" sort="Xin, Haoyang" uniqKey="Xin H" first="Haoyang" last="Xin">Haoyang Xin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tao" sort="Zhang, Tao" uniqKey="Zhang T" first="Tao" last="Zhang">Tao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009</wicri:regionArea>
<wicri:noRegion>225009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yufeng" sort="Wu, Yufeng" uniqKey="Wu Y" first="Yufeng" last="Wu">Yufeng Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wenli" sort="Zhang, Wenli" uniqKey="Zhang W" first="Wenli" last="Zhang">Wenli Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095</wicri:regionArea>
<wicri:noRegion>210095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Pingdong" sort="Zhang, Pingdong" uniqKey="Zhang P" first="Pingdong" last="Zhang">Pingdong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xi, Mengli" sort="Xi, Mengli" uniqKey="Xi M" first="Mengli" last="Xi">Mengli Xi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Michigan State University, East Lansing, MI, 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Michigan State University AgBioResearch, East Lansing, MI, 48824</wicri:regionArea>
<wicri:noRegion>48824</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31529535</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.</ArticleTitle>
<Pagination>
<MedlinePgn>253-264</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14536</ELocationID>
<Abstract>
<AbstractText>The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.</AbstractText>
<CopyrightInformation>© 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xin</LastName>
<ForeName>Haoyang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yufeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Wenli</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Pingdong</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xi</LastName>
<ForeName>Mengli</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-2189-4093</Identifier>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Jiming</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">FISH</Keyword>
<Keyword MajorTopicYN="Y">chromosome painting</Keyword>
<Keyword MajorTopicYN="Y">evolution</Keyword>
<Keyword MajorTopicYN="Y">karyotype</Keyword>
<Keyword MajorTopicYN="Y">poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31529535</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14536</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Acosta, M.C. and Premoli, A.C. (2018) Understanding the extensive hybridization in South American Nothofagus through karyotype analysis. Bot. J. Linn. Soc. 188, 74-86.</Citation>
</Reference>
<Reference>
<Citation>Albert, P.S., Zhang, T., Semrau, K., Rouillard, J.M., Kao, Y.H., Wang, C.J.R., Danilova, T.V., Jiang, J.M. and Birchler, J.A. (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl Acad. Sci. USA, 116, 1679-1685.</Citation>
</Reference>
<Reference>
<Citation>Beliveau, B.J., Joyce, E.F., Apostolopoulos, N. et al. (2012) Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc. Natl Acad. Sci. USA, 109, 21301-21306.</Citation>
</Reference>
<Reference>
<Citation>Blackburn, K.B. and Harrison, J.W.H. (1924) A preliminary account of the chromosomes and chromosome behaviour in the Salicaceae. Ann. Bot. 38, 361-378.</Citation>
</Reference>
<Reference>
<Citation>Braz, G.T., He, L., Zhao, H.N., Zhang, T., Semrau, K., Rouillard, J.M., Torres, G.A. and Jiang, J.M. (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics, 208, 513-523.</Citation>
</Reference>
<Reference>
<Citation>Carbone, L., Harris, R.A., Gnerre, S. et al. (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature, 513, 195-201.</Citation>
</Reference>
<Reference>
<Citation>Cheng, Z.K., Buell, C.R., Wing, R.A., Gu, M. and Jiang, J.M. (2001) Toward a cytological characterization of the rice genome. Genome Res. 11, 2133-2141.</Citation>
</Reference>
<Reference>
<Citation>Cook, L.G. (2000) Extraordinary and extensive karyotypic variation: A 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera : Coccoidea : Eriococcidae). Genome, 43, 255-263.</Citation>
</Reference>
<Reference>
<Citation>DiFazio, S.P., Slavov, G.T. and Joshi, C.P. (2011) Populus: a premier pioneer system for plant genomics. InGenetics, genomics and breeding of poplar(Joshi, C.P., DiFazio, S.P. and Kole, C., eds). Boca Raton, FL: CRC Press, pp. 1-28.</Citation>
</Reference>
<Reference>
<Citation>Dong, F.P., Han, S.Y., Zhang, S.G., Qi, L.W., Liu, B., Li, X.L. and Chen, C.B. (2007) Physical mapping of 25S rDNA on metaphase chromosomes of Populus Salicaceae in five sections by fluorescence in situ hybridization. Acta Bot. Yunnanica, 29, 423-428.</Citation>
</Reference>
<Reference>
<Citation>Gaudet, M., Jorge, V., Paolucci, I., Beritognolo, I., Mugnozza, G.S. and Sabatti, M. (2008) Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet. Genomes, 4, 25-36.</Citation>
</Reference>
<Reference>
<Citation>Gaut, B.S., Morton, B.R., McCaig, B.C. and Clegg, M.T. (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA, 93, 10274-10279.</Citation>
</Reference>
<Reference>
<Citation>Han, Y.H., Zhang, T., Thammapichai, P., Weng, Y.Q. and Jiang, J.M. (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 200, 771-779.</Citation>
</Reference>
<Reference>
<Citation>He, L., Braz, G.T., Torres, G.A. and Jiang, J.M. (2018) Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma, 127, 505-513.</Citation>
</Reference>
<Reference>
<Citation>Hizume, M., Shibata, F., Matsusaki, Y. and Garajova, Z. (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 105, 491-497.</Citation>
</Reference>
<Reference>
<Citation>Hou, L.L., Xu, M., Zhang, T. et al. (2018) Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol. 18, 110.</Citation>
</Reference>
<Reference>
<Citation>Hu, B.Q., Dong, F.P., Wang, C.G., Qi, L.W., Song, W.Q. and Chen, C.B. (2012) Multicolor fluorescence in situ hybridization of seven Populus species-ribosomal DNA and telomere repeat sequence. Acta Sci. Nat. Univ. Nankai. 45, 58-64.</Citation>
</Reference>
<Reference>
<Citation>Iovene, M., Wielgus, S.M., Simon, P.W., Buell, C.R. and Jiang, J.M. (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics, 180, 1307-1317.</Citation>
</Reference>
<Reference>
<Citation>Islam-Faridi, M.N., Nelson, C.D., DiFazio, S.P., Gunter, L.E. and Tuskan, G.A. (2009) Cytogenetic analysis of Populus trichocarpa - ribosomal DNA, telomere repeat sequence, and marker-selected BACs. Cytogenet. Genome Res. 125, 74-80.</Citation>
</Reference>
<Reference>
<Citation>Jauch, A., Wienberg, J., Stanyon, R., Arnold, N., Tofanelli, S., Ishida, T. and Cremer, T. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc. Natl Acad. Sci. USA, 89, 8611-8615.</Citation>
</Reference>
<Reference>
<Citation>Jiang, J.M. (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27, 153-165.</Citation>
</Reference>
<Reference>
<Citation>Jiang, J.M. and Gill, B.S. (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 49, 1057-1068.</Citation>
</Reference>
<Reference>
<Citation>Jiang, J.M., Gill, B.S., Wang, G.L., Ronald, P.C. and Ward, D.C. (1995) Metaphase and interphase fluorescence in-situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl Acad. Sci. USA, 92, 4487-4491.</Citation>
</Reference>
<Reference>
<Citation>Kato, A., Lamb, J.C. and Birchler, J.A. (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci. USA, 101, 13554-13559.</Citation>
</Reference>
<Reference>
<Citation>Kay, K.M., Whittall, J.B. and Hodges, S.A. (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol. Biol. 6, 36.</Citation>
</Reference>
<Reference>
<Citation>Kent, W.J. (2002) BLAT - the BLAST-like alignment tool. Genome Res. 12, 656-664.</Citation>
</Reference>
<Reference>
<Citation>Laroche, J., Li, P., Maggia, L. and Bousquet, J. (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc. Natl Acad. Sci. USA, 94, 5722-5727.</Citation>
</Reference>
<Reference>
<Citation>Liu, S.Y., Liu, Y.M., Yang, X.H. et al. (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930.</Citation>
</Reference>
<Reference>
<Citation>Lysak, M.A., Fransz, P.F., Ali, H.B.M. and Schubert, I. (2001) Chromosome painting in Arabidopsis thaliana. Plant J. 28, 689-697.</Citation>
</Reference>
<Reference>
<Citation>Ma, T., Wang, J.Y., Zhou, G.K. et al. (2013) Genomic insights into salt adaptation in a desert poplar. Nat. Commun. 4, 2797.</Citation>
</Reference>
<Reference>
<Citation>Ma, J.C., Wan, D.S., Duan, B.B., Bai, X.T., Bai, Q.X., Chen, N.N. and Ma, T. (2019) Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnol. J. 17, 451-460.</Citation>
</Reference>
<Reference>
<Citation>Mandakova, T., Li, Z., Barker, M.S. and Lysak, M.A. (2017) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J. 91, 3-21.</Citation>
</Reference>
<Reference>
<Citation>Meng, Z., Zhang, Z.L., Yan, T.Y. et al. (2018) Comprehensively characterizing the cytological features of Saccharum spontaneum by the development of a complete set of chromosome-specific oligo probes. Front. Plant Sci. 9, 1624.</Citation>
</Reference>
<Reference>
<Citation>Mousavi, M., Tong, C.F., Liu, F.X., Tao, S.T., Wu, J.Y., Li, H.G. and Shi, J.S. (2016) De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies. BMC Genomics, 17, 656.</Citation>
</Reference>
<Reference>
<Citation>Pakull, B., Groppe, K., Meyer, M., Markussen, T. and Fladung, M. (2009) Genetic linkage mapping in aspen (Populus tremula L. and Populus tremuloides Michx.). Tree Genet. Genomes, 5, 505-515.</Citation>
</Reference>
<Reference>
<Citation>Paolucci, I., Gaudet, M., Jorge, V., Beritognolo, I., Terzoli, S., Kuzminsky, E., Muleo, R., Mugnozza, G.S. and Sabatti, M. (2010) Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Genet. Genomes, 6, 863-875.</Citation>
</Reference>
<Reference>
<Citation>Qu, M.M., Li, K.P., Han, Y.L., Chen, L., Li, Z.Y. and Han, Y.H. (2017) Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet. Genome Res. 153, 158-164.</Citation>
</Reference>
<Reference>
<Citation>Ribeiro, T., Barao, A., Viegas, W. and Morais-Cecilio, L. (2008) Molecular cytogenetics of forest trees. Cytogenet. Genome Res. 120, 220-227.</Citation>
</Reference>
<Reference>
<Citation>Ribeiro, T., Barrela, R.M., Berges, H., Marques, C., Loureiro, J., Morais-Cecilio, L. and Paiva, J.A.P. (2016) Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes. Front. Plant Sci. 7, 510.</Citation>
</Reference>
<Reference>
<Citation>Shi, L.M., Ye, Y.Y. and Duan, X.S. (1980) Comparative cytogenetic studies on the red muntjac, Chinese muntjac and their F1 hybrids. Cytogenet. Cell Genet. 26, 22-27.</Citation>
</Reference>
<Reference>
<Citation>Smith, S.A. and Donoghue, M.J. (2008) Rates of molecular evolution are linked to life history in flowering plants. Science, 322, 86-89.</Citation>
</Reference>
<Reference>
<Citation>Stanyon, R., Rocchi, M., Capozzi, O., Roberto, R., Misceo, D., Ventura, M., Cardone, M.F., Bigoni, F. and Archidiacono, N. (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res. 16, 17-39.</Citation>
</Reference>
<Reference>
<Citation>Tang, X.M., Szinay, D., Lang, C. et al. (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics, 180, 1319-1328.</Citation>
</Reference>
<Reference>
<Citation>Tanksley, S.D., Ganal, M.W., Prince, J.P. et al. (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141-1160.</Citation>
</Reference>
<Reference>
<Citation>The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature, 475, 189-195.</Citation>
</Reference>
<Reference>
<Citation>The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635-641.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G.A., DiFazio, S., Jansson, S. et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z.S., Du, S.H., Dayanandan, S., Wang, D.S., Zeng, Y.F. and Zhang, J.G. (2014) Phylogeny reconstruction and hybrid analysis of Populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS One, 9, e103645.</Citation>
</Reference>
<Reference>
<Citation>Wu, F.N. and Tanksley, S.D. (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11, 182.</Citation>
</Reference>
<Reference>
<Citation>Wu, F.N., Mueller, L.A., Crouzillat, D., Petiard, V. and Tanksley, S.D. (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics, 174, 1407-1420.</Citation>
</Reference>
<Reference>
<Citation>Xin, H.Y., Zhang, T., Han, Y.H., Wu, Y.F., Shi, J.S., Xi, M.L. and Jiang, J.M. (2018) Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 127, 313-321.</Citation>
</Reference>
<Reference>
<Citation>Yang, F., Carter, N.P., Shi, L. and Fergusonsmith, M.A. (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma, 103, 642-652.</Citation>
</Reference>
<Reference>
<Citation>Yang, F., Obrien, P.C.M., Wienberg, J., Neitzel, H., Lin, C.C. and Ferguson-Smith, M.A. (1997) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma, 106, 37-43.</Citation>
</Reference>
<Reference>
<Citation>Yang, W.L., Wang, K., Zhang, J., Ma, J.C., Liu, J.Q. and Ma, T. (2017) The draft genome sequence of a desert tree Populus pruinosa. Gigascience, 6, 1-7.</Citation>
</Reference>
<Reference>
<Citation>Yin, T.M., DiFazio, S.P., Gunter, L.E., Riemenschneider, D. and Tuskan, G.A. (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor. Appl. Genet. 109, 451-463.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Zhang, S.G.,Qi, L.W., Liu, B., Gao, J.M., Chen, C.B., Li, X.L. and Song, W.Q. (2005) Construction of poplar (Populus tremula) chromosome 1 specific DNA library by using a microdissection technique. Plant Mol. Biol. Rep. 23, 129-138.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xin, Haoyang" sort="Xin, Haoyang" uniqKey="Xin H" first="Haoyang" last="Xin">Haoyang Xin</name>
</noRegion>
<name sortKey="Wu, Yufeng" sort="Wu, Yufeng" uniqKey="Wu Y" first="Yufeng" last="Wu">Yufeng Wu</name>
<name sortKey="Xi, Mengli" sort="Xi, Mengli" uniqKey="Xi M" first="Mengli" last="Xi">Mengli Xi</name>
<name sortKey="Zhang, Pingdong" sort="Zhang, Pingdong" uniqKey="Zhang P" first="Pingdong" last="Zhang">Pingdong Zhang</name>
<name sortKey="Zhang, Tao" sort="Zhang, Tao" uniqKey="Zhang T" first="Tao" last="Zhang">Tao Zhang</name>
<name sortKey="Zhang, Wenli" sort="Zhang, Wenli" uniqKey="Zhang W" first="Wenli" last="Zhang">Wenli Zhang</name>
</country>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Xin, Haoyang" sort="Xin, Haoyang" uniqKey="Xin H" first="Haoyang" last="Xin">Haoyang Xin</name>
</region>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31529535
   |texte=   An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31529535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020